Adversarial Label Flips Attack on Support Vector Machines

نویسندگان

  • Han Xiao
  • Huang Xiao
  • Claudia Eckert
چکیده

To develop a robust classification algorithm in the adversarial setting, it is important to understand the adversary’s strategy. We address the problem of label flips attack where an adversary contaminates the training set through flipping labels. By analyzing the objective of the adversary, we formulate an optimization framework for finding the label flips that maximize the classification error. An algorithm for attacking support vector machines is derived. Experiments demonstrate that the accuracy of classifiers is significantly degraded under the attack.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support vector machines under adversarial label contamination

Machine learning algorithms are increasingly being applied in security-related tasks such as spam and malware detection, although their security properties against deliberate attacks have not yet been widely understood. Intelligent and adaptive attackers may indeed exploit specific vulnerabilities exposed by machine learning techniques to violate system security. Being robust to adversarial dat...

متن کامل

Support Vector Machines Under Adversarial Label Noise

Battista Biggio [email protected] Dept. of Electrical and Electronic Engineering University of Cagliari Piazza d’Armi, 09123, Cagliari, Italy and Blaine Nelson [email protected] Dept. of Mathematics and Natural Sciences Eberhard-Karls-Universität Tübingen Sand 1, 72076, Tübingen, Germany and Pavel Laskov [email protected] Dept. of Mathematics and Natura...

متن کامل

Adequacy of the Gradient-Descent Method for Classifier Evasion Attacks

Despite the wide use of machine learning in adversarial settings including computer security, recent studies have demonstrated vulnerabilities to evasion attacks—carefully crafted adversarial samples that closely resemble legitimate instances, but cause misclassification. In this paper, we examine the adequacy of the leading approach to generating adversarial samples—the gradient descent approa...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Infinity-Norm Support Vector Machines Against Adversarial Label Contamination

Nowadays machine-learning algorithms are increasingly being applied in security-related applications like spam and malware detection, aiming to detect never-before-seen attacks and novel threats. However, such techniques may expose specific vulnerabilities that may be exploited by carefully-crafted attacks. Support Vector Machines (SVMs) are a well-known and widely-used learning algorithm. They...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012